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Abstract
Background and Purpose
The “translational roadblock” has long impeded the implementation of experimental therapeutic approaches for stroke into clinical routine. Considerable interspecies differences, e.g., in brain anatomy and function, render comparisons between rodents and humans tricky, especially concerning brain reorganization and recovery of function. We tested whether stroke-evoked changes in neural networks follow similar patterns in mice and patients using a systems-level perspective. 
[bookmark: _Hlk26865962]Methods
We acquired resting-state functional magnetic resonance imaging (rs-fMRI) data during the early post-stroke phase in a sample of human patients and compared the observed network changes with data from two mouse stroke models, i.e., photothrombosis (PT) and distal middle cerebral artery occlusion (MCAO). Importantly, data were subjected to the same processing steps, allowing a direct comparison of global network changes using graph theory. 
[bookmark: _Hlk26866007]Results
We found that network parameters computed for both mouse models of stroke and humans follow a similar pattern in the post-acute stroke phase. Parameters indicating the global communication structure’s facilitation, such as small worldness and characteristic path length, were similarly changed in humans and mice in the first days after stroke. Additionally, small worldness correlated with concurrent motor impairment in humans. Longitudinal observation in the subacute phase revealed a negative correlation between initial small worldness and motor recovery in mice. 
Conclusions
We show that network measures based on rs-fMRI data after stroke obtained in mice and humans share notable features. The observed network alterations could serve as therapeutic readout parameters for future translational studies in stroke research. 


Non-standard Abbreviations and Acronyms
rs-fMRI	resting-state functional magnetic resonance imaging
PT		photothrombosis
dMCAo	distal middle cerebral artery occlusion
CC 		normalized mean clustering coefficient 
CPL 		normalized characteristic path length

Introduction
A “translational roadblock” has long impeded the implementation of experimental therapeutic approaches for stroke into the clinical routine.1 These shortcomings are mainly attributed to insufficient or inapplicable experimental models used to generate preclinical data.1, 2 Moreover, readouts of therapeutic efficacy often differ significantly between animal models of stroke and clinical studies, leading to a stepwise efficacy decline and raising the question of transferability of experimental study results.3 
One significant shortcoming of preclinical research is its almost exclusive focus on molecular and cellular processes. Cerebral ischemia, however, also triggers effects at the systems level that are strongly linked to neurological impairment and recovery of function.4 Additionally, a mouse brain dramatically differs from that of a stroke patient: A mouse brain has no gyri and sulci, a relatively small white matter - grey matter ratio, and a fundamentally different functional organization. Furthermore, even in severe initial deficits following stroke, mice can recover relatively fast, while in humans, a severe deficit is a robust predictor for poor recovery.5 This raises whether the mouse brain is suited to serve as a systems-level model for stroke reorganization in human patients. 
We and others have previously suggested noninvasive in vivo imaging to generate suitable readouts that may help to close the translational gap between experimental models and patient studies.2, 6, 7 Since it is applicable both in humans as well as mice, rs-fMRI constitutes a promising approach to obtain comparable functional readouts of brain activity across species. When examining functional connectivity in both humans and rodents after ischemic stroke, previous studies have consistently found connectivity alterations even in remote brain areas connected to the lesioned area, including interhemispheric connections of sensorimotor networks.8-10   Longitudinal behavioral- and fMRI-data assessments suggest that network alterations are related to motor deficits in humans 11, 12 and rodents.8 That is, failure to reestablish connectivity within motor regions11 or aberrant recruitment of contralateral motor areas12 is associated with poor motor recovery. On the same note, Wang et al. described network alterations inside the motor execution network within the first year after stroke as assessed by global and local graph parameters and demonstrated that the network parameters could predict the recovery degree after stroke.10 Likewise, longitudinal neuroimaging in rats for up to 70 days after stroke revealed distinct network patterns corresponding to severity of motor impairment. 13 While the synopsis of previous studies provides promising evidence for applying rs-fMRI in translational stroke research, it should be noted that all these studies were conducted independently, varying in the timing of data acquisition, statistical methods, and region of interest selection.  Hence, it remains to be demonstrated that rodent models reflect the network alterations observed after stroke in humans and whether those network alterations correlate with clinical parameters of stroke severity. 
Therefore, we used rs-fMRI to compare stroke-related network changes in humans and rodents suffering from motor deficits due to a first-ever stroke. Using a uniform methodological approach to assess network changes, we could compare different network parameters between species directly. We hypothesized that (i) experimental mouse models of stroke generate analogous alterations in functional neuronal networks as observed in a human stroke and that (ii) these alterations can be reliably characterized and quantified by rs-fMRI across species using the same imaging protocols, resulting in concordant alterations of global network parameters. Consequently, we compared rs-fMRI data obtained using two well-characterized mouse models of cortical stroke, i.e., photothrombosis (PT) and distal middle cerebral artery occlusion (dMCAo), with rs-fMRI data of a group of patients in the early phase after ischemic stroke.


Materials and Methods
Data availability
The data that support the findings of this study and all custom-written MATLAB codes are available from the corresponding author upon reasonable request.
Humans Participants
[bookmark: _Hlk67295877]Resting-state fMRI data of thirteen first-ever acute ischemic stroke patients, with unilateral hand deficit, admitted to the Department of Neurology at the University Hospital of Cologne within < 10 days from onset, were compared to 13 healthy controls, matched for age, gender, and head movement within the MRI scanner (Table 1). All participants provided informed written consent before inclusion. The local ethics committee had approved the study, which followed the Declaration of Helsinki. Details are described in the Data Supplement.
Animal stroke models
All animal procedures followed the German Laws for Animal Protection and were approved by the local animal care committee and local governmental authorities (Landesamt für Natur, Umwelt und Verbraucherschutz North Rhine-Westphalia, LANUV; AZ 84-02.04.2013.A068, 84-02.04.2014.A370). The data were obtained from two separate, ongoing stroke studies and retrospectively chosen to compare early network changes after experimental stroke.14 
Experimental stroke was induced on the right hemisphere. Seventeen homozygous male NMRI-Fox1nu/Fox-1nu mice with Tyrc albino background were used to conduct the dMCAo,15 while photothrombosis was induced in 14 male C57BL/6JRj mice.16 Details are described in the Data Supplement. 
MRI data acquisition and processing 
In humans, magnetic resonance images were acquired on a 3-Tesla MAGNETOM PRISMA scanner equipped with a 64-channel head coil (Siemens AG, Germany). Imaging in mice (before stroke induction, three days and 14 days thereafter) was conducted using a small-animal 9.4 T horizontal MRI system (BioSpec; Bruker BioSpin, Ettlingen, Germany) with a 20 cm bore diameter and actively shielded gradient coils (BGA12S2, 600 mT/m; Bruker BioSpin) with a 1H quadrature cryo-genic surface coil (CryoProbe, Bruker BioSpin) described previously.17 To acquire resting-state fMRI data, gradient echo-planar imaging (EPI) was used in both species (Supplementary Table 1). 
Further data preprocessing was conducted using SPM8 (www.fil.ion.ucl.ac.uk/spm) for human data, while rodent data were processed using a recently developed atlas-based imaging data analysis pipeline.18 Details on MRI acquisition, preprocessing, and graph analyses are described in the Data Supplement.
Statistical analyses
Statistical analyses were performed using the SPSS 25 software (IBM, Armonk, NY) and Microsoft Excel (Microsoft, Redmond, WA). To assess the alteration of graph parameters, a delta score compared to control and, in the case of longitudinal data in mice, compared to baseline scores before experimental stroke induction, was computed. Details are described in the Data Supplement. 


Results
Sample
The animal sample consisted of mice subjected to two different experimental models of cortical stroke, i.e., dMCAo (Fig 1A) or photothrombosis (Fig 1B). The human sample consisted of 13 first-ever stroke patients with hand motor deficits, scanned within the first nine days after stroke (M = 3.8 days, SD = 2.98), with the strongest lesion overlap in the temporoparietal cortex (Fig 1C). The extent of ischemic lesions in % of affected brain tissue was similar in humans and mice, consistent with minor stroke (Fig 1D), without significant differences in relative lesion size between the mouse models and the human sample (M = 1.66 %, SD = 2.5, p = 0.93 vs. PT, p = 0.07 vs. dMCAo). Otherwise, PT (M = 0.54 % of the brain, SD = 0.24) produced significantly smaller infarcts of the sensorimotor cortex than dMCAo (M = 1.3 %, SD = 0.56, X²(2) = 7.64, p = 0.039, KWT), while primarily affecting the forepaw function in mice, leading to an initial decrease of over 50% in the compound sensorimotor neuroscore three days after stroke compared to individual baseline function (M = 51.6, SD = 9.55; Fig 1E). As typically observed in rodents, neurological deficits spontaneously improved within a few weeks (X² = 23.01, p < 0.001; Friedman test), with significant recovery as early as 14 days after stroke (M = 32.6, SD = 10.4, p = 0.021; Fig 1E). Likewise, we recently reported that mice after dMCAo displayed an impairment of sensorimotor function as assessed by the rotarod test during the first week after stroke, followed by complete recovery.15 Stroke patients presented with mild to moderate symptoms, predominantly affecting the upper extremity, with a mean score on the National Institutes of Health Stroke Scale (NIHSS) of 1.67 (+/- 2.46). Since patients were screened within the first days after stroke, some patients spontaneously improved hand motor function during screening. Importantly, all patients showed unilateral hand motor deficits at the time of the fMRI session, showing at least mild paresis or deficits in fine motor skills, represented by a decrease relative grip strength (stroke group M = 0.84, SD = 0.2, healthy controls M = 0.95, SD = 0.17) and in finger tapping frequency (stroke group M = 3.9 /s, SD = 1.2 /s, healthy controls M = 4.9, SD = 0.5). All stroke patients recovered from their deficits within three to six months (NIHSS M = 0.3, SD = 0.48, t(21) = 2.4, p = 0.024; Fig 1F). 
Resting-state networks
In stroke patients within the first nine days after stroke (Fig 2A) and both mouse models 14 days after stroke (Figs 2B and C), respectively, there was a pronounced increase in functional connectivity (fc) strength as compared to the respective control groups. In both species, an increase in resting-state connectivity was found for sensorimotor regions and other areas, including frontal and cerebellar regions. Hence, both humans and rodents featured similar neural network responses following a stroke, with a general increase of connectivity early after stroke. This increase in connectivity was most strikingly not limited to interconnected regions (modules) in the healthy brain but extended across the entire connectome. 
To further investigate these alterations of functional networks, graph-theoretical analyses were performed. Graph parameters were computed over the full range of density thresholds to quantify the increase in connectivity strength, and mean values of a density range from 0.1 to 0.3 were used for comparison (Fig 3A). Within this range, there was a significant increase in node strength between stroke patients and healthy controls (t(24) = 2.64, q = 0.028, Fig 3B). Similar to the human stroke group, there was a significant increase in node strength after PT (t(18) = 3.83, q = 0.005), as well as after dMCAo (t(20) = 3.86, q = 0.005, Fig 3B). 
We next computed small worldness as an index of global network function, reflecting a network organization with locally robust clusters, while distances between any pair of nodes are relatively small despite the network size. All datasets showed small-world topology with CC/CPL > 1. In the human sample, stroke led to a significant increase in small worldness of almost 30% compared to age-matched healthy controls (t(24) = 2.58, q = 0.029, Fig 3C). A concordant increase in small worldness was observed after PT (73%; t(18) = 3.74, q = 0.005) as well as after dMCAo (38%; t(20) = 2.48, q = 0.029) as compared to respective baselines and controls (Fig 3C). For further analyses of small worldness over the full density range, please see Supplemental Fig. 3.
This increase in small worldness was driven by both a reduction of characteristic path length (Fig 4A) and an increase of the clustering coefficient (Fig 4B). Both effects were most pronounced in the mouse models but could also be observed in human stroke patients. However, in the human stroke sample, differences in small worldness were mainly attributed to a decrease in characteristic path length by about 18% in stroke patients compared to healthy controls (t(24) = -2.61, q = 0.029, Fig 4A), while the clustering coefficient did not change significantly (t(24) = 1.71, q = 0.11, Fig 4B). In both animal models, concordant but even more pronounced effects were observed. The decrease of characteristic path length compared to baseline was stronger when induced by PT compared to controls ( t(18) = -3.88, q = 0.005), than following dMCAo compared to controls (t(20) = -2.23, q = 0.042, Fig 4A). In contrast, the increase in the clustering coefficient compared to baseline was greater after dMCAo compared to controls (t(20) = 3.36, q = 0.006) than after PT compared to controls  (t(18) = 2.20, q = 0.046, Fig 4B). 
To further compare the driving effects of stroke on small worldness across species, the normalized decrease in characteristic path length was correlated to the normalized increase in the clustering coefficient (Fig 4C). In both mice and humans, the increase in small worldness after stroke was predominantly explained by a decrease in characteristic path length, with the delta of characteristic path length 20% larger than the delta of the clustering coefficient in humans (t(24) = 4.62, q < 0.001), and similar changes occurring in mice subjected to PT (19%; t(16) = 2.20, q = 0.043) or dMCAo (13%; t(26) = 3.50, q = 0.002, Fig 4D), respectively. 
To quantify the similarities across species, we used the intra-class correlation coefficient to evaluate group averages, yielding high similarity of small worldness (0.85, q = 0.001) and node strength (0.83, q = 0.002). Furthermore, the percentage of common responses (PCR) indicated that the distribution of stroke groups was considerably more similar across species in the case of mean node strength (mean PCR = 80.43%) and small worldness (mean PCR = 78.08 %), compared to stroke groups and respective controls (node strength = 42.2 %; small worldness = 50.24%). 
Relationship with the clinical deficit
We next sought to elucidate the functional relevance of global network changes after stroke and assessed graph parameters’ relationship to stroke-induced motor deficits. Correlating the initial patient’s compound motor performance to their network organization as reflected by small worldness showed a negative correlation, with higher small worldness being associated with reduced motor performance early after stroke (r = -0.56, p = 0.048, Fig 5A). In contrast, the mice’s initial motor performance showed no significant correlation with network parameters (Fig 5B). 
Besides, correlations between motor recovery in mice after PT, measured as the difference in the compound motor function score (neuroscore) between day 21 and day three, showed a strong negative correlation with small worldness three days after stroke (r = -0.82, p = 0.004, Fig 5C). However, there was no correlation between recovery scores and graph-theoretical parameters in humans, possibly owing to the small between-patients variance with a substantial fraction of patients with rather small deficits leading to ceiling effects. 
Discussion
Preclinical models of stroke are essential for investigating the pathophysiology underlying cerebral ischemia and developing novel therapeutic approaches. Nonetheless, despite a wealth of promising results from preclinical models, most clinical trials have failed to reproduce those beneficial effects19. Our study suggests that it might be possible to mitigate the translational roadblock in stroke research by choosing (i) a preclinical model optimally matched to the patient collective and (ii) neuroimaging-based readouts producing meaningful data on the systems-level that are functionally relevant to both mice and men.
Ischemic insults have successfully been modeled in rodents, showing various molecular and pathophysiological characteristics, as observed in human stroke. In the photothrombosis model, a defined and highly reproducible photochemical thrombosis of terminal arterial vessels is induced. Another robust model of ischemic cortical lesions is generated by occlusion of the distal part of the middle cerebral artery (dMCAo) via cauterization. These two models were used in the current study and reflected essential aspects of minor human strokes, with similar relative lesion sizes compared to the human brain. Although individual studies regarding post-stroke adaptations on the network level exist in both mice and humans, comparability between experimental models and the clinical course has not been systematically investigated to date. 
Previous clinical neuroimaging studies on patients more heavily affected by stroke primarily reported a reduction of interhemispheric connections, observed for both activation tasks20 and at rest.9, 11 Most interesting, Park et al. found a rather delayed increase in connectivity within the late subacute to chronic stage.9 Recovery of function was associated with normalization of functional connectivity.12 In contrast, previous studies reported an increase in functional connectivity within contralesional regions or non-affected subnetworks.21-23 Studies on severely affected stroke patients with subcortical lesions described both clustering coefficient and characteristic path length to decrease during recovery, suggesting a more random network topology10 or characteristic path length to increase.24 When exclusively investigating thalamic lesions with sensory deficits, no alterations of global network parameters were detected within the first week.25 
Within mouse stroke models, only a small number of studies investigated functional connectivity. In proximal MCA occlusion, which produces larger infarcts compared to brain size, including subcortical structures, van Meer and colleagues observed conflicting results about changes in characteristic path length when subcortical structures were affected by the ischemic lesion.13 Moreover, lesions containing subcortical and cortical regions showed a pronounced increase in small world topology, global clustering coefficient, and characteristic path length.13 Likewise, our recent study on this severe stroke model impacting subcortical structures showed a pronounced decrease of connectivity, also concerning the opposite hemisphere.17 Other studies using this model observed a decrease in task-based activation,26 or impaired interhemispheric functional connectivity of the primary motor cortex.8, 17 Strikingly, the present study is the first to investigate the effects of cortical infarcts using rs-fMRI. Importantly, our results converge with electrophysiological data following PT, which described widespread disinhibition and hyperexcitability remote from the lesion itself.27 
We here investigated a relatively homogenous patient sample with minor (predominantly cortical) stroke. We did not see any reduced interhemispheric connectivity but rather a widespread increase in connectivity within the first days after stroke onset. Overall, our findings indicate an increase in global communication structure across the network, likely to facilitate information transfer between distant regions of the brain.28 
[bookmark: _Hlk52805525]To assess global alterations on the network level, graph theory depicts an approach increasingly used in neuroscience to characterize network properties and compare networks from different backgrounds. Relatively few studies so far explored parameters based on graph theory to describe global network affection after stroke. We here report a comparable increase of network parameters across species, evidenced by an increase in mean node strength and small-world topology in the early subacute phase after a minor stroke. Both parameters of integration, captured by characteristic path length, and segregation, captured by mean clustering coefficient, were altered in our mouse models, with the predominance of reduction in characteristic path length. Most interestingly, relationships between changes in global integration and segregation were similar between mice and humans. Small worldness – a combination of the topological parameters of high clustering with low characteristic path length29 - is altered after human stroke30, and some neuropsychiatric disorders such as schizophrenia31 or Alzheimer’s disease32. It was suggested that a small world topology provides the basis for efficient information processing33, and allows for segregation of information clusters, leading to increased network resilience.34 Otherwise, longer-range communication was proposed to go along with higher metabolic demand.35 As such, the increased integration and segregation measures described in our study is comparable with other disturbances of the cerebral communication structure, e.g., after mild to moderate traumatic brain injury36, 37 or multiple sclerosis,38 resulting in compensatory network upregulation. Likewise, Hillary et al. describe an increased long-range communication structure, with a gradual drift to decrease in characteristic path length and increase in clustering coefficient in the late subacute phase after moderate to severe traumatic brain injury.39 Comparable to network adaptations after stroke, these findings seem to depend on the extent of disconnection, e.g., by diffuse axonal injury or the affection of subcortical hub nodes.      
[bookmark: _Hlk51926718][bookmark: _Hlk52803222]Several additional factors need to be considered when comparing the mentioned changes in functional connectivity across trials. Foremost, our study focused on minor cortical stroke with mild to moderate motor deficits and good recovery. This differentiates our approach from other published findings observed in more severely affected patients or more severe stroke models, showing decreased connectivity and more random network topology, resulting in disconnection syndromes.40 Additionally, data suggest that in both mice and humans, ischemic lesions in predominantly cortical localization induce specific alterations in functional networks distinct from those caused by lesions involving subcortical structures. The most parsimonious explanation is that cortical lesions reduce the characteristic path length, reflecting increased information transfer, an effect canceled out by co-existing subcortical lesions affecting long-distance tracts. This distinction is crucial for choosing the appropriate rodent model in preclinical stroke research and generating translatable results. 
Only a few studies have investigated network changes in the early subacute stage of stroke.41 However, the timing of the investigation and the analysis of dynamic changes are crucial to extract comparable results about functional network alterations. For example, the increase in neuronal excitability already decreases after the first week after photothrombotic stroke in rats.42 In contrast, in humans, interhemispheric connectivity decreases at least two weeks after acute stroke,43 while little is known about the first few days post-stroke. We here show an increase in functional connectivity in a group of mildly affected patients. However, the described alterations might be temporarily confined or even obscured in patients with more severe network disruptions and more significant functional deficits. Furthermore, data processing steps used, i.e., global signal regression, physiological nuisance regression or segmentation, and the normalization, are crucial to interpreting functional connectivity data, rendering comparisons across trials or species difficult. Additionally, computation of graph parameters depends on other preferences and assumptions, e.g., brain parcellation methods or the thresholding mode, warranting detailed consideration and precautions when comparing results across trials. Accordingly, we assessed functional connectivity using similar processing steps across species to improve the comparability of our findings.    
[bookmark: _Hlk51852472][bookmark: _Hlk51851782][bookmark: _Hlk51852051][bookmark: _Hlk52192529]Besides, we found small worldness to correlate with the functional deficit in humans. In line with previous studies demonstrating the predictive value of functional connectivity after ischemic lesions,44, 45 our data suggest that increases in small worldness are linked to a more pronounced functional deficit in minor stroke patients in the early subacute phase. Additionally, we found that motor recovery in mice is inversely related to an early increase in small worldness. Given the hypothesis that predominantly cortical lesions are more likely to spare critical white matter tracts connecting network hubs, our results of increased network connectivity converge with analyses in the context of other neuropsychiatric diseases of network disruption, e.g., traumatic brain injury or multiple sclerosis,39 pointing to a compensatory reaction of the network. Small world topology is often considered a beneficial property of brain function,34 an assumption that may not necessarily be valid for patients throughout their recovery. Small worldness was found to increase early after stroke15 and decrease again over time12, a phenomenon hypothesized to reflect initial mechanisms of neural reorganization, including excessive rewiring and hyperconnectivity during the first days after stroke15. The present study results support the idea that high levels of small worldness may serve as a marker of network damage or at least indicates a somewhat diminished network reserve early after stroke. Altogether, further research is necessary to confirm these results and investigate the direction of influence between behavior and network parameters. 
One limitation of our study is the relatively small sample size, especially concerning stroke patients in the early subacute phase. Within this sample, cerebral blood flow-relevant arterial stenoses (> 40% NASCET) were excluded by ultrasound, rendering a substantial interference with neurovascular coupling and impact on fc-measurements unlikely.46 Across species, time points of measurements differed slightly, as we found connectivity changes in rodents 14 days after stroke, while measurements in patients were conducted within the first nine days after symptom onset. While human data were compared to controls, rodent data were additionally normalized to individual baseline measurements. Most noteworthy, in contrast to the homogeneous lesion distribution in the experimental stroke models, stroke lesions in the human sample spread considerably but within the range of even larger stroke trials.47 Additionally, hemispheric effects on reorganization patterns might have been obscured by homogenization of the lesioned side in human samples. Likewise, lesion location within the cortex differed between the two mouse models with homogenous lesion distribution. Despite these limitations and differences across species at the spatial and temporal level, we observed similar functional network changes manifest within the early subacute phase after minor - predominantly cortical - stroke, independent of lesion distribution and stroke induction mode. This suggests robustness and underscores the generalizability of the findings. It also strongly encourages further investigations and confirmation in more extensive trials. 
[bookmark: _Hlk52192930]In conclusion, this translational study supports the concept of stroke as a network disease,48 while at the same time, it suggests meaningful readout parameters for preclinical rodent models that – for a long time – have neglected the network aspect of stroke. This systems approach opens yet unexplored possibilities for translational studies designed to address the network effects of treatments, including the primary modulation of neuronal networks, such as noninvasive brain stimulation. Furthermore, the underlying mechanisms of network phenomena observed across species are assessable on the rodent’s cellular- and molecular levels, paving the way for meaningful translational stroke research. 
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Figure Legends
Figure 1: Comparable ischemic lesions in human stroke patients and experimental mouse models
A) Experimental model of distal occlusion of the middle cerebral artery (dMCAo, n=17), heat-maps of individual lesions two weeks after stroke show a core overlap of 100%.
B) Experimental model of photothrombosis (PT, n=13); likewise, fused heat-maps after two weeks demonstrate a core overlap of 100%.
C) Human stroke patients (n=13) with mild to moderate motor deficits predominantly showed a temporoparietal lesion distribution on fused heat-maps. Human lesion location was adjusted by mirroring, if necessary. 
D) Comparing lesion sizes, displayed as the percentage of the individual’s whole brain size, revealed only significant differences between PT and dMCAo, while the lesion size of mouse models was not significantly different from the human sample (*p<0.05).
E) Compound motor score in mice subjected to PT showed a functional impairment to about 50% of baseline values three days after stroke. Over three weeks, motor deficits improved spontaneously with significant recovery as early as day 14 (*p<0.05; ***p<0.001). 
F) Human patients were mildly to moderately affected by stroke, with a mean score on the National Institutes of Health Stroke Scale (NIHSS) of 1.67. Similar to the mouse model, significant functional recovery occurred during observation (*p<0.05). 



Figure 2: Across species, functional connectivity increased after minor stroke
A) Human rs-fMRI scans were parcellated by atlas-based registration to the Automated Anatomical Labeling atlas (AAL, 116 nodes) and displayed as delta maps of the group mean of full networks within the first nine days after stroke (Pearson full correlation, Z-transformed). Adjacency matrices were sorted by maximized modularity of control networks based on the Louvain community detection algorithm (gamma = 1.1). Additionally, a histogramm displays changes in the strength of functional connectivity (fc-strength) in the human stroke sample as compared to age-matched healthy controls (Mdn=0.2, Mad=0.07).
B) Rs-fMRI scans of mice subjected to PT 14 days before were parcellated by atlas-based registration to the Allen Mouse Brain Atlas (AMBA, 98 nodes) and displayed as delta maps of the group mean of full networks two weeks after stroke (Pearson full correlation, Z-transformed). Adjacency matrices were sorted by maximized modularity of control networks as in (2A). Additionally, a histogramm displays changes in fc-strength in mice subjected to PT as compared to the individual baseline (Mdn=0.184, Mad=0.08).
C) Rs-fMRI scans of mice subjected to dMCAo 14 days before imaging were parcellated by atlas-based registration to the AMBA and displayed in analogy to (2A) and (2B). Additionally, a histogramm displays Changes in fc-strength in mice subjected to dMCAo as compared to the individual baseline values (Mdn=0.1, Mad=0.06).
For raw matrices of within-group networks, see Supplementary Fig. 2.


Figure 3: Stroke induces an increase in node strength and small worldness in mice and humans
A) Mean node strength (exemplary data shown for human stroke patients) was computed over the full range of density thresholds, and mean values of a density range between 0.1 and 0.3 were chosen for further evaluation. 
B) Node strength of each stroke group is displayed as the difference to its corresponding control group. Two weeks after PT, node strength was significantly increased compared to baseline, while there was a similar significant increase in node strength after dMCAo (*p<0.05; **p<0.01).
C) Boxplots displaying delta values of small worldness compared to healthy controls. Stroke increased small worldness by almost 30% in humans compared to healthy age-matched controls. Likewise, small worldness increased two weeks after PT compared to baseline control, and dMCAo compared to baseline control (*p<0.05; **p<0.01).







Figure 4: Small worldness is increased after stroke across species, driven by a decrease in characteristic path length
A) Increase in small worldness induced by a reduction of characteristic path length (CPL). In stroke patients, CPL decreased by about 18% compared to healthy age-matched controls. In both mouse models, this effect was pronounced, with the most substantial CPL decrease observed after PT compared to control. A similar reduction of CPL, albeit with a smaller effect size, occurred after dMCAo compared to control (*p<0.05; **p<0.01).  
B) Additionally, an increase of small worldness was, in part, induced by the rise in mean clustering coefficient (CC). While this effect was not statistically significant in humans, it was present after PT, compared to control, and most pronounced after dMCAo compared to control (*p<0.05; **p<0.01).
C) The normalized decrease in CPL is depicted about the normalized increase in CC. The solid line indicates an equal change of both parameters. The changes in CPL provide the most significant distinction between species after stroke.  
D) The ratio of reduction in CPL to increase in CC indicates that in all three datasets, the decrease in CPL dominates the increase in CC, as the two parameters are associated with the increase in small worldness. Decreased CPL dominates increased CC by about 15% in humans, with comparable proportions in both PT and dMCAo (*p<0.05; **p<0.01).



Figure 5: Across species, an increase in small worldness is associated with more severe functional deficits after stroke
A) In a human stroke, small worldness was inversely correlated to motor function assessed by a composite score of ARAT, grip strength, and finger-tapping frequency. 
B) In mice after PT, the relationship between small worldness and motor function as assessed by a composite motor score (neuroscore in %) was not statistically significant. 
C) In mice after PT, motor recovery, measured as improvement in the neuroscore between days 3 and 21, showed an inverse correlation with small worldness. Data are displayed as a partial regression plot, showing the partial correlation between small worldness and recovery while controlling for the initial motor impairment.  


Table 1: characteristics of the human sample of stroke patients
	ID
	Gender
	Age
	Handed-ness
	Affected 
side
	time after
stroke (days)
	thrombolysis/ thrombectomy
	ARAT Score 
(affected arm)
	NIHSS
	Lesion 
(mm³)

	1
	M
	62
	r
	l
	8
	no/no
	43
	5
	62485

	2
	F
	82
	r
	r
	5
	no/no
	51
	4
	2106

	3
	F
	60
	l
	r
	2
	no/no
	57
	1
	99252

	4
	M
	54
	r
	r
	4
	yes/yes
	54
	0
	137207

	5
	M
	68
	r
	r
	2
	no/no
	49
	3
	11

	6
	M
	83
	r
	l
	2
	no/no
	54
	2
	1428

	7
	M
	43
	r
	l
	1
	yes/yes
	57
	1
	52232

	8
	M
	78
	r
	r
	5
	no/no
	57
	0
	1269

	9
	M
	64
	r
	l
	1
	yes/no
	57
	1
	1947

	10
	M
	54
	r
	l
	1
	no/no
	43
	4
	3794

	11
	M
	69
	l
	r
	1
	no/no
	57
	0
	2653

	12
	M
	59
	r
	l
	8
	no/no
	55
	1
	1343

	13
	M
	71
	r
	r
	9
	yes/yes
	57
	0
	29946

	Total
	11M/2F
	-
	11r/2l
	7r/6l
	-
	4/3
	-
	-
	-

	Mean 
(SD)
	-
	65.2 
(11.7)
	-
	-
	3.8 
(3.0)
	-
	53.2 
(5.2)
	1.7 
(1.8)
	30436 
(44905)
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